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We present a new shape skeleton pruning algorithm based on contour approximation and the integer

medial axis. The algorithm effectively removes unwanted branches, conserves the connectivity of the

skeleton and respects the topological properties of the shape. The algorithm is robust to significant

boundary noise and to rigid shape transformations, it is fast and easy to implement. High accuracy

reconstruction of the shape is possible from the generated skeleton by means of the integer medial axis

transform. Our algorithm also produces a vector representation of the skeleton. We compare our

algorithm with state-of-the-art techniques for computing stable skeleton representations of shapes

including pruning. We test and compare our solution using the MPEG-7 CE Shape-1 Part B dataset

looking for skeleton connectivity, complexity, parameter selection, and accuracy/quality of the

outcome. The experimental results show that our solution outperforms existing solutions according

to these criteria.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Since Blum’s [1] introduction of the medial axis, medial
representations of shapes have been studied extensively in the
literature [2]. Several authors have covered definitions, mathe-
matical properties and their relation to the object boundaries,
therefore their representation in 2D and 3D [2,3]. The medial axis
can be seen as the set of points with more than one closest
equidistant point to the shapes boundary. The medial axis of a
shape gives a simple and compact representation of the shape.
The medial axis coupled with the distance from the boundary,
make it possible to reconstruct the original shape. Geometrically
complex shape boundaries have a complex medial axis, while
simplified shape boundaries can also be described with a simpler
medial axis. The medial axis of the simplified shape can be
considered a simplified skeleton representation of the complex
shape. Often a simplified version of the shape is useful, e.g., in
several applications in computer vision, image analysis, and
digital image processing. Some of these applications include
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shape matching [4,5], shape segmentation [6], optical character
recognition [7,8], and fingerprint recognition [9], among others.

One approach to shape simplification is to prune branches from a
complex skeleton. Skeleton branches can be pruned by many
different means, e.g., by distance or angle thresholds [10], by shape
approximations [11], by smoothing of boundaries, or by growing and
shrinking the shape’s boundary [12–14]. The definition of a desirable
pruning outcome is not universal and hence an automatic pruning
solution does not exist to the best of our knowledge. Some of the
existing algorithms create critical geometrical and topological
changes to the skeleton’s curves, creating more noise points, shrink-
ing the final skeleton, disconnecting a skeleton’s curves or removing
some important branches of the skeleton. All these drawbacks
decrease the effectiveness of the analysis of the shape in several
applications [14]. Unfortunately, skeletonization algorithms of dis-
crete shapes are particularly sensitive to noise and topological
changes [11] because the quantized pixel locations cause excessive
branching (see Fig. 1). In this paper we center our attention on finding
a skeleton for shapes represented by two-dimensional binary raster
images, i.e., the input to our algorithm is a discrete shape representa-
tions with its inherently limited spatial resolution.

The desired outcome of skeleton pruning is often application
dependent, although all pruning techniques of shape skeletons
aim at the simplification of the medial axis. Some output
skeletons that are shifted far from the medial axis to simplify
their representation [12,13,15,16], others are discrete approxima-
tions of the medial axis [10,17,18,16], connectivity [11,19],
topology [18], complexity [10] and automation [15,20,21] are
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Fig. 1. Skeleton of a noisy image and pruned solution.
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other goals. The objective of this paper is a skeletonization and
pruning solution that preserves the main features of the shape
and its topological properties. Our contributions are a novel
pruning technique that conserves connectivity of the pruned
skeleton and outputs a subset of the integer medial axis of the
input shape and is suitable for automatic real-time applications.
In our experimental validation, our pruning algorithm outper-
forms existing solutions in terms of stability, i.e., the result is
more stable than existing solutions even if the shape undergoes a
rigid image transformations and if different input parameters are
selected. Our method uses only two intuitive threshold para-
meters: boundary approximation error and a scale parameter for
the final pruning. Because our algorithm computes a skeleton that
is a discrete approximation of the medial axis, it allows recon-
struction of the simplified shape from the skeleton.

Our skeletonization and pruning solution described in Section
3 is a combination of four steps. First, the contours of the shape
are approximated by simple piecewise curves; we discuss lines
and cubic shape approximation in Section 3.1. Second, we
compute the skeleton with the integer medial axis (IMA) trans-
form and prune with the help of the contour approximation (see
Section 3.2). Third, we introduce our novel criterion to prune
noisy branches in Section 3.3. Finally, the skeleton points are
vectorized using piecewise cubic curves as described in Section
3.4. The algorithm achieves our above stated goals on the MPEG-7
CE Shape-1 Part B dataset of 1400 images and performs better
than competing approaches with respect to the objective criteria
detailed in Section 4. The results obtained with our algorithm are
stable with respect to boundary noise and rigid transformations
(i.e., noisy and rotated versions of an image produce the same
clean skeleton representation as the original image). Noisy
branches are removed without loss of skeleton connectivity and
the pruned skeleton conserves the topological properties of the
shape. The algorithm’s complexity is O(kn þ N); where k is the
number of knots detected during the contour approximation, n is
the contour length and N is the image size (see Section 3.5).
It is therefore an efficient (and practically fast) solution. The
parameter choice has little influence on outcome, allowing
the use of the same parameters for the complete test dataset of
1400 images. (We used a distance threshold T¼25 for the
boundary approximation error and a scale factor S¼1.2 in the
final pruning).
2. Literature review

Many different algorithms exist to compute and prune a skeleton
of a binary shape. The main categories of different skeletonization
algorithms are: shape thinning [15,20–22,16], Voronoi-based analysis
[11,14,23–25] and algorithms based on the feature transform [10,11]
or on the distance transform [17,18,22].

In shape thinning [15,20,21], pixels are peeled from the
boundary shape according to a set of rules relating to a pixel’s
neighborhood. The process is repeated until there are no more
pixels to remove from the shape and the shape skeleton remains.
These solutions conserve the connectivity of the final skeleton
representation and the topological properties of the shape. They
also work automatically because there is no input parameter
selection. On the other hand, although their output is a skeleton
with many desirable properties, they fail to compute the actual
medial axis. As a result, most of thinning algorithms do not save
the distance to the boundary [26] and shape reconstruction from
the skeleton is not possible [11,15]. Also, these algorithms are
often slow because of the re-iterative process of contour detection
and pixel removal.

Another type of algorithm is based on Voronoi diagrams
[27,28,16]. These solutions sample points on the boundary and
compute the Voronoi regions of these points. The boundary of the
regions inside the binary shape are an approximation of the
skeleton of the shape. The skeleton approximation will become
closer to the exact solution as the number of boundary points
goes to infinity. Voronoi-based algorithms are typically quite
complex because selecting the correct samples of the boundary
is involved. As a result many algorithms in this category are slow
[11,27]. Martinez et al. [23] propose two variants to compute the
Voronoi regions that simplify the boundary sampling problem but
they still need a post-processing step to prune their skeleton.
Liu et al. [16] propose the use of a Voronoi diagram to create their
extended grassfire transform keeping track of the distance of each
Voronoi vertex to the boundary. Besides desirable theoretical
properties of their solution, it is an interesting mixture between
thinning, Voronoi-based, and feature transform based algorithms
but initial sample selection influences the outcome.

The third type is based on the mapping of the feature trans-
form [10,29] or distance transform [17,18,22]. The feature trans-
form computes the closest boundary point for each pixel inside a
digital shape and the distance transform computes the distance to
the nearest boundary pixel. These algorithms can be fast, they
detect the medial axis of the digital shape accurately, and shape
reconstruction can be easily achieved. On the other hand, noise
sensitivity, and pruning techniques that conserve connectivity
and skeleton topology are challenging in these types of algo-
rithms. Sanniti di Baja and Thiel [18] present a topology preser-
ving pruning solution to this problem. They prune peripheral
skeleton branches based on a comparison between the shape
reconstructed with the inverse distance transform applied to the
skeleton before and after removal of a branch. They only remove
complete peripheral branches if the change in shape is below a
threshold related to the length of the branch.

Because of excessive branching of skeletons for noisy digital
shapes, pruning is an essential part of most practical skeletoniza-
tion algorithms. Many different pruning techniques have been
proposed but they fall mainly in two categories: those which pre-
process the shape’s boundary [12,13,26,30,31] (e.g., boundary
smoothing) and those that aim to remove unwanted skeleton
points depending on some classification criteria [10,11,26,16].
Shaked and Bruckstein [26] give a complete analysis of pruning
methods and explain their drawbacks.

In the first category, the smoothing of boundaries may cause
some undesirable effects on the skeleton, e.g., skeleton shift, and
may violate the topological properties, e.g., add new branches to
the skeleton [29]. In particular, this category has significant
problems in distinguishing between noise and low frequency
shape information on boundaries [11]. The scale-axis-transform
[12,13] is a different kind of smoothing method that uses a noisy
pre-computed medial axis. In 2D, it grows the original shape by
linearly scaling the radii of the medial disks and then removing
branches of the medial axis that are covered by the larger disks.
It preserves the main features of the shape and it reduces



Fig. 2. Distance and angular pruning, both are sensitive to input parameter

selection creating disconnected skeletons.

A. Solı́s Montero, J. Lang / Computers & Graphics 36 (2012) 477–487 479
low frequency boundary noise. However, it also simplifies the
topology of the shape, i.e., it succeeds in creating a new simpler
skeleton representation of the shape by simplifying the topology
of the shape (e.g., shape holes are occluded when the shape is
grown). As a consequence, the skeleton may be shifted far from
the medial axis of the original shape. This behavior of the scale-
axis-transform may be desirable for some applications, notably
level-of-detail tasks, but does not meet our goals.

Liu et al. [16] extend the original idea of the medial axis
transform and add a notion of the center of a shape in their
extended grassfire transform. They introduce a novel significance
criteria for pruning the extended medial axis for possible applica-
tions in shape alignment and shape matching. Their experiments
show excellent results for shape alignment and matching. How-
ever, their pruning technique does not preserve connectivity of
the extended medial axis and their solution is not topology
preserving [16].

Bai et al. [11] introduce a new concept similar to our solution.
They pre-process the shape boundary using a discrete curve
evolution to prune the final skeleton. We approximate the shape
with a simpler method (i.e., piecewise curve approximation) and
introduce a more flexible pruning technique that is also more
stable for noisy shapes and under shape rotations. Their solution
as ours is capable of conserving the topological properties with-
out shifting the medial axis of the discrete shape or shortening
branches. However, they rely on ‘‘a priori’’ knowledge of the
shape to prune it, i.e., the number of sides of the polygon to
approximate the original shape is required as input parameter to
their DCE method (see Fig. 5). Shen et al. [19] introduce a different
significance measure for skeleton pruning without boundary
approximation, that outperforms the DCE algorithm. The algo-
rithm does not rely on ‘‘a priori’’ knowledge but, its time
complexity is higher than our solution and the authors report
that the algorithm takes around 7 seconds on average to extract a
pruned skeleton from [512�512] images [19] from the same
MPEG-7 dataset. Our solution extracts the pruned skeleton of the
1400 images with resolutions from [256�256] to [950�800] in
0.1 s on average (see Section 4). Images with a resolution of
[512�512] take about 0.12 s on average.

The main problem in pruning unwanted skeletal points is
selecting a good removal threshold. The removal of a point on the
medial axis needs to be based only on local information of the
surrounding medial axis points [11]. The global information of the
shape is usually discarded during skeletonization causing topo-
logical changes and shortening of the branches [26]. Discerning
noise in the data of a digital skeleton is still an open problem.
Hesselink and Roerdink [10] introduce three pruning techniques
with their integer medial axis: constant, linear, and square-root
pruning, but all of them may disconnect the skeleton and may
shorten branches (see Fig. 2).
3. Algorithm overview

Our proposed algorithm has four major steps which we detail
in the following: contour approximation, skeleton computation,
pruning and skeleton vectorization.

Our solution shares the concept of Bai et al. [11] that every
skeleton point is the center of a maximal circle whose boundary
tangent points belong to different ‘‘sides’’ of the shape. Skeleton
points are pruned if they have all their closest boundary points lie
on the same contour segment. Every point in the pruned skeleton
remains linked to a boundary point that is tangential to its
maximal circle [1] after pruning.

For the first step of our solution, we propose to use a boundary
partition that does not require to know the number of vertices a
priori. This is in contrast to the discrete curve evolution (DCE)
introduced by Bai et al. [11] that requires one to specify the
number of vertices of the polygonal approximation beforehand.
Intuitively, we want to separate our shape’s boundary into
different ‘‘sides’’ which we will use in the next step to prune
skeleton points associated to only one ‘‘side’’.

The second step of our algorithm computes the integer medial
axis transform [10] and starts to prune the skeleton using the
contour approximation from the first step. As in [11], there is a
skeleton branch at every partition point that needs to be removed
after the second step of our algorithm (see Fig. 9). We introduce a
novel significance measure based on Blum’s medial axis definition
of maximal circles, where instead of analyzing isolated skeleton
points we check the leaf branches for removal. Leaf branches of
the skeleton end at a boundary pixel. This second pruning step
handles the elimination of branches that while they have bound-
ary points on different contour approximations because of the
knot selection, they are still on the same ‘‘side’’ of the shape. In
contrast, Bai et al. use a significance measure calculated with their
DCE. Finally, we create a vector representation of the skeleton
points using the contour approximation from the first step of the
algorithm.

3.1. Contour approximation

For the algorithm’s first step, we approximate the binary shape
by a piecewise curve. Piecewise curve approximations have been
used in the computer graphics industry for a long time. Many
methods trying to approximate a set of points by a piecewise
curve have been published, e.g., [32–34]. The most challenging
problem for these methods is the knot placement to create an
optimal approximation. Some of these algorithms may select the
knot placement automatically as the methods of Denison et al.
[35] and of Plass and Stone [32]. Because we are interested in a
real-time algorithm, we need to take into consideration the trade-
off between optimal knot placement versus time/space complex-
ity of the contour approximation method. Therefore, we select a
simple split-and-merge fitting strategy for knot placement fol-
lowing the algorithm by Ramer [36] as the curve approximation
step. Ramer’s algorithm splits the approximating curve at points
of maximal error which tend to be extremal points. While
choosing extremal points may result in suboptimal approxima-
tions, it often helps us to make good pruning decisions in later
steps of our algorithm. Fig. 3 shows an example where the
additional knot required by Ramer’s algorithm over optimal node
placement produces a better skeleton after pruning.



Fig. 3. Example of significant branch removal because of optimal knot placement.

Original shape (a) along with the contour approximation steps in (b) to (d) with

thresholds T¼10, S¼1.2. The suboptimal knots result in a better contour

segmentation for final pruning as shown in (e) than the optimal knot placement

in (f).

Fig. 4. The effect of different selection of T while pruning the IMA without the

final pruning (i.e., the value s is selected as 0). First row shows the results using

cubic boundary approximation, second row results are generated with linear

approximation.

Fig. 5. Pruning using Discrete Curve Evolution DCE. Left: 5 verices, Middle: 15

vertices, Right: 20 vertices.

Fig. 6. Piecewise contour approximation example. When we approximate the

contour formed by n boundary points, we split the approximating curve (here,

a cubic Bezier curve) if the maximum distance from the center of the pixel to the

approximating curve is bigger than T threshold selection.
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The approximation uses an input threshold T as the maximum
distance error allowed between the fitted data and the approxi-
mated curve. The piecewise approximation uses the contours of
the binary shape to generate a simpler and accurate representa-
tion. The fitting strategy can work with any curve but we
demonstrate the use of line segments as the simplest curve
approximation and cubic Bezier curves with least square fitting.
Both, line segments and cubic Bezier curves lead to similar
outcomes (see Fig. 4), although cubic Bezier curves require less
knots for the same approximation error. The threshold value T

determines how closely the approximation fits the original out-
line. Low values of T remove only higher frequency ‘‘noise’’ from
the skeleton without affecting significant parts of the shape while
higher values will increase the number of branches removed but
without creating a discontinuous skeleton. Our pruning does not
shift the skeleton away from the location of medial axis.

Given a shape contour with boundary pixels C ¼ fp1,p2, . . . ,png,
we want to find a subset of those pixels and use them as end
points of curve sections (e.g., lines or cubics) that approximate the
boundary. The shape boundary may be formed by several con-
tours, then the same fitting approach is applied for each of the
contours. We select an input threshold error T that specifies
the maximum allowed distance between the original points and
the fitted curve. Initially, we take the start and end point of the
contour as our initial knots and approximate them by a curve, e.g.,
a line segment with end points p1 and pn. Then we measure the
minimum distance dk of the center of each pixel to the fitted
curve and look for the point pk that is farthest from the curve with
maximum distance dk. If the distance from pk to the curve exceeds
the T value, we split the segment at pk into two new segments
p1,pk and pk,pn fit them using the same curve type (see Fig. 6).
This process is repeated for each segment until the T constraint is
no longer violated. This produces an ordered set of knots that
approximates the shape with a limit error T. The T threshold
represents the level-of-detail of the approximation. We empiri-
cally selected a threshold of T¼25 in our experiments. The bigger
the error threshold T, the less detail of the shape is taken into
consideration and more likely to compute less knots. The smaller
T the closest will be the piecewise approximation to the original
data (see Fig. 4). A value of To0:5 will make the piecewise curve
approximation pixel accurate (i.e., knots will be the original
pixel list).

For a cubic parametric curve approximation using Bezier curves
we set the initial and last position at two consecutive knot points.
Then, using the least square fitting technique we can approximate
the best middle control points using the original points between
the consecutive knots. This cubic approximation does not consider
a continuity constraint on the first derivative of two consecutive
segments but reduces the number of required segments. The knot
set is typically smaller with cubics than using linear segments for
the same T. Cubics have the advantage of fitting a larger amount of
points with a single curve section but more computation is
required than with the linear approximation.

The least-squares Bezier fitting solves

S¼
Xn

i ¼ 1

½pi�qðtiÞ�
2 ð1Þ



Fig. 7. A Skeleton point X is selected if it has a neighbor point Y with a closest

boundary point that belong to a different curves (C1 vs. C2) at the same distance d,

see Listing 1.

Fig. 8. First row shows the effect of selection of s values for a cubic approximation
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with n data points pi and the parametric Bezier curve qðtiÞ.
We can write Eq. (1) as

S¼
Xn

i ¼ 1

pi�ð1�tiÞ
3P0þ3tið1�tiÞ

2P1

þ3t2
i ð1�tiÞP2þt3

i P3

 !2

where P0 and P3 are the first and last control points; the
remaining control points P1 and P2 can be determined by setting
dS=dP1 ¼ 0 and dS=dP2 ¼ 0. Solving for P1 and P2 gives

P1 ¼ ðA2C1�A1C2Þ=ðA1A2�A12A12Þ

and

P2 ¼ ðA1C2�A12C1Þ=ðA1A2�A12A12Þ

where

A1 ¼ 9
Xn

i ¼ 1

t2
i ð1�tiÞ

4, A2 ¼ 9
Xn

i ¼ 1

t4
i ð1�tiÞ

2

A12 ¼ 9
Xn

i ¼ 1

t3
i ð1�tiÞ

3

and

C1 ¼
Xn

i ¼ 1

3tið1�tiÞ
2
½pi�ð1�tiÞ

3P0�t3
i P3�

C2 ¼
Xn

i ¼ 1

3t2
i ð1�tiÞ½pi�ð1�tiÞ

3P0�t3
i P3�

After the set of knots is computed, we assign the contour
points between two consecutive knots fpk . . . ,pkþ1g to the same
curve. We also assign an unique identifier for each curve segment.
All contours of the shape; exterior and interior (i.e., holes) are
processed in the same manner.

3.2. Modified integer medial axis

For the second step, we compute the skeleton by means of the
integer medial axis (IMA) without any of the pruning considered by
Hesselink et al. [10]. In finding the skeleton we select pixels as
skeleton points if they have two equidistant points belonging to two
different boundary curves instead of simply two different equidistant
points on the boundary as in the original IMA. Our goal is to select
skeleton pixels that have equidistant boundary points on two
‘‘different’’ sides of the shape. This criterion will considerably reduce
the number of skeleton points detected by the IMA but still produce
a connected skeleton (see Section 3.5). Unfortunately, this criterion
does not remove all the undesired skeleton points but leaves whole
branches that should be removed in place. Branches that end at the
intersection of two consecutive curves (see Fig. 7) will be part of the
skeleton after this modified IMA. Thus, we need to take extra care of
these branches in the pruning step of our algorithm.

Listing 1. Program fragment for filtering the IMA skeleton using
our pruning condition. The map C returns the curve associated to
a boundary point and map ft2 returns the associated closest
boundary point
procedure_compare(x,y)
xf:¼ft2[x]; yf:¼ft2[y];

C1:¼C[xf]; C2:¼C[yf];

if Jxf�yfJ241 and C1 !¼C2 then

crit:¼inprod(xf-yf, xfþyf-x-y)

if crit 40 then skel[x]:¼SKEL

endif

if crit o0 then skel[y]:¼SKEL

endif

endif
3.3. Final Pruning

For the third step, we need to compute all of the end points and
branch points of the skeleton output of the previous IMA step.
Assuming a skeleton is one pixel width [10] and always located at
a pixel, then those pixels on the skeleton with more than two
neighboring pixels are branch points while end points have only
one neighboring skeleton pixel. During branch removal, we con-
sider all end points of a branch and their respective branch point
belonging to same branch. Our pruning criterion is as follows:
Consider a branch fbp, . . . ,epg with branch point bp and end point
ep such that the pixel chain formed by the skeleton points
fbp, . . . ,epg do not contain other branch points or end points
except bp and ep. Let f be the closest boundary point of bp as
extracted from the feature transform computed as a preprocessing
step of the IMA. We mark a branch fbp, . . . ,epg for removal if the
point ep is inside of the circle with center bp and a radius equals to
the Euclidean distance 9f�bp92. We can make this pruning rule
stronger if we introduce an input scale factor s for the radius and
mark branches for removal if they are inside the scaled circle
centered at the branch point (see Eq. (2) and Fig. 9), i.e.,

9ep�bp92rsn9f�bp92: ð2Þ

with fixed value T¼1, and second row for a cubic approximation with fixed value

of T¼25.



Fig. 10. Final results of the proposed algorithm using linear and cubic approximation

contours.

Fig. 11. Skeleton vectorization using the feature transform to automatically adapt

the threshold of the curve approximation. The point x has the maximum distance

emax to the approximated curve at the point xf. We split the curve at x if emax is

bigger than Jxf�xJ or if it is bigger than T from Section 3.1.

Fig. 12. Input: 2D binary image. Output: Vector representation of the skeleton.

Only 19 end points plus 19 control points are necessary to represent 4352 skeleton

points using a piecewise cubic approximation.

Fig. 13. Pruning the IMA based on contour approximation does not disconnect a

skeleton branch. For the skeleton points fa, . . . ,bg to be pruned, the boundary

contour between Ca1 and Cb1 and between Ca2 and Cb2 would have to be

approximated with the same curve which is impossible.

Fig. 9. The unwanted branches (shown dark) introduced in the second step of the

algorithm are pruned using Eq. (2). The dark branch to end point ep is removed by

the test at branch point bp.
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After analyzing all branches for removal, we remove those
pixels that belong to the marked branches of the skeleton except
for the branch points. We re-iterate this process until no more
branch removals are possible. Note that after removing the pixel
chain of a branch, we can update the status of the branch points
and reduce the computation of searching over the full skeleton set
for branch and end points. The final output of the algorithm is a
clean skeleton representation (see Fig. 10).

The scale factor s targets the branches that end at the
approximation knots created while pruning the IMA. The selec-
tion of s will affect the final outcome of the algorithm, where
larger values will generally remove more unwanted branches (see
Fig. 8).

3.4. Skeleton vectorization

In the final step, we vectorize the skeleton points. Each branch
fbp, . . . ,epg or fbp, . . . ,bpg is processed separately and approxi-
mated with a piecewise cubic Bezier curve as explained in
Section 3.1. We apply an automatic adaptive threshold using
the feature transform stored with the IMA from Section 3.2 during
the skeleton curve approximation. While processing a branch, we
need to check the distance e from every skeleton point x to the
approximated curve. If the Euclidean distance emax between the
pixel with maximum distance to the approximated curve is bigger
than the distance between the point x and its corresponding
boundary point xf stored in the feature transform or if it is bigger
than threshold T from the boundary approximation of Section 3.1,
we split at x (see Fig. 11). Fig. 12 shows the binary shape input of
our algorithm and the final vector representation of the skeleton.

3.5. Correctness and complexity

For showing the correctness of our algorithm we first note
that our skeleton output is a subset of the IMA skeleton pixels.
This proves that every selected pixel is in fact on the medial axis
of the discrete shape [11]. Additionally, we need to show that the
pruning solution does not disconnect the final skeleton. Let us
assume to the contrary that there is a branch that will become
disconnected by pruning points fa, . . . ,bg from the skeleton.
Let the two boundary curves Ca1 and Ca2 be linked to skeleton
point a, and the curves Cb1 and Cb2 be linked to skeleton point b

(see Fig. 13). Points fa, . . . ,bg will be pruned if and only if the
curve connecting Ca1 and Cb1 is the same that connects Ca2 and
Cb2. This requires that curve Ca1 and Ca2 or Cb1 and Cb2 are the
same. If this is true, then the chains ending at a and b would also
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be pruned, correspondingly because they would have only one
contour segment linked to them. But this contradicts our assump-
tion of a disconnected skeleton. The connectivity of the skeleton is
never broken in the final pruning step because only complete
pixel chains between an end point and a branch point are
removed. We note however that our algorithm may remove
complete branches that can be considered significant depending
on the boundary approximation.

The boundary approximation step of the algorithm has time
complexity of O(knþN), where k is the number of knots detected
during the contour approximation, n is the contour length and N

the image size. Computing the contour of the shape is O(N) [22]
and the contour approximation has O(kn) with a worst case of
Oðn2Þ for k¼n when T¼0 and all contour points are selected as
knots. Assigning the contour pixels to a curve is O(n). The IMA is
computed in O(N) [10]. The third step is O(n) because each branch
fbp, . . . ,epg is only checked once. The vectorization of the skeleton
is 0(kn). Finally, the total time complexity is therefore O(knþN).
A space complexity of O(N) can be easily achieved.
Table 1
Running time comparison.

Algorithm Running time

(95% confidence interval) (s)

IMA þ {CP,LP,SRP} 0.0870.01

Linear 0.0970.004

Cubic 0.1070.009

Scale axis transform 0.1770.013

Thinning 0.3570.018

Voronoi 0.6870.021

DCE 5.1370.518

Fig. 14. Example of the performance of DCE (a) and thinning (b) under image

rotation. The black skeleton is computed in original image, then, the original

image is rotated around the image center (using nearest-neighbor and bilinear

interpolation) and the white skeleton is computed. The black skeleton is rotated

using the same interpolation method and superimposed on the white skeleton to

check for stability. The input parameters of the methods remained unchanged.
4. Experimental results

We implemented three skeletonization algorithms for the
comparison of our algorithms with the three categories: a thin-
ning approach [15], a Voronoi-based algorithm [22], and a feature
transform [10]. Also, five pruning techniques were implemented.
Three pruning techniques suggested by Hesselink and Roerdink
[10]: constant pruning (DP), linear pruning (LP), and square-root
pruning (SRP). A discrete variation of the scale-axis-transform
[12,13] and DCE pruning [11] were also implemented. The
skeletonization and pruning solutions were tested over the 1400
image MPEG-7 CE Shape-1 Part B dataset; a dataset commonly
used for shape analysis [37,38] (e.g., shape matching, shape
retrieval, shape skeletonization). The dataset is structured in 20
shape samples of 70 different classes (e.g., bats, planes, beetles,
etc.). We account in our tests for running time, accuracy of the
skeleton, rotation invariance, shape reconstruction from the
skeleton, connectivity of skeleton, and ease of parameter selec-
tion. The image resolution of the complete dataset varies from
[256�256] to [950�800].

Pruning is a necessary step for the Voronoi-based and IMA
algorithms. The thinning approach is more stable and it creates
cleaner representations without input parameters or any pruning,
i.e., it is fully automatic. However, the skeleton computed from
the thinning solution is only an approximation of the medial axis
and not the correct medial axis as in the other solutions. Also, the
thinning approach is sensitive to noisy boundaries and shape
rotations, introducing several unwanted branches for the same shape.

The selection of a correct pruning threshold for distance and
angular pruning that is needed for the Voronoi-based algorithm
and the IMA is problematic, different threshold values disconnect
the shape, e.g., when the leg width of the giraffe in Fig. 5b is less
than the selected threshold. In the case of angular pruning with
the IMA, it introduced ‘‘noise’’ in areas closer to the boundaries
(see Fig. 2). Also, the parameters for the pruning need to change
for different shapes. In contrast to our solution where the
selection of input parameters is quite stable and we used the
same input parameters (T¼25, s¼1.2) for the complete dataset.
We find the results of our approach also more visually appealing
than with the other approaches including the automatic thinning
solution (see Figs. 23 and 24).

To compare the running time of the implemented techniques
we recorded the computation times of each algorithm. Voronoi-
based and thinning solutions were quite slow compared to the
other solutions (see Table 1). The IMA is the fastest solution (i.e.,
IMA þ {CP,LR,SRP} are grouped into one category because of their
similar results in speed and accuracy), followed very closely by
our proposed algorithm using linear and cubic contour
approximations.

Shape reconstruction was not possible from the respective
outputs of the thinning algorithm and the scale-axis-transform.
Based on the skeleton calculated with our proposed algorithm,
reconstructing of the original shape is possible with only small
error for the complete dataset using the same input parameters
(T¼25, S¼1.2). For example, the reconstructed shape from the
skeleton in Fig. 15 showed 98% overlap with the original shape.
The shape can also be fairly accurately reconstructed from the
skeleton calculated with the Voronoi-based algorithm, with the
IMA and with the DCE but these three algorithms needed
different input parameters for different shapes.

In general, all the algorithms were sensitive to noisy bound-
aries but our solution outperformed the other implemented
algorithms on the same image set (see Fig. 16). To complete the
comparison, we measured how stable the implementations were
under image rotations. For each image in the dataset we first
computed their skeleton, then we rotated the original images in
steps of 351, 451, 701, 851, 1101, and 1351, using nearest-neighbor,
bilinear, and bicubic interpolation. Each image was rotated
around its center. We computed the skeleton of the rotated image
using the same parameters as for the skeleton before rotation and
compared the two skeletons. We calculated the percentage of
matching pixels between the two skeletons after also rotating the
pixels of the skeleton of the original image. Besides the



Fig. 16. Output of the proposed algorithm with the same noisy and rotated

example. Note the stability of the skeleton detection.

Fig. 17. Parameter choice comparison between our solution and DCE, output example

algorithm using the same configuration parameters (T¼25, S¼1.2). The number of cu

respectively. Second row is the DCE using ‘‘optimal’’ user selected input parameters (i.e

17, 14). Third row is the DCE using constant number of sides equals to 10.

Fig. 15. Example of shape reconstruction using the proposed solution (left) and

IMA þ constant pruning (right).
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percentage of matching pixels, we also calculated how many
pixels were inserted to the medial axis because of the image
rotation and how many disappeared from the original skeleton
representation (see Fig. 14).

The best matching percentage was obtained by our proposed
algorithm using linear and cubic boundary approximations with
95% overlap, followed by the IMA, the scale-axis-transform, DCE
and the thinning approach (see Tables 2 and 3). The interpolation
method had little influence on the results and the scores were
quite similar for nearest-neighbor, bilinear and bicubic interpola-
tion (see also Figs. 18–21).

Finally, we compared the stability of the skeleton of our
proposed algorithm against DCE when input parameters are
varied. The parameter choice for DCE is specific to each shape
(see Fig. 17). Our proposed algorithm allows us to use the same
parameters for the complete dataset, yielding excellent results for
each of the 70 classes available including for noisy shapes (see
Fig. 22). The results obtained by DCE needs parameter tuning in
search of an ‘‘optimal’’ skeleton representation. In general, the
s are from the beetle class of the MPEG-7 dataset. First row is the output of our

bic segments detected in the first step of our algorithm is 40, 21, 19, 32, and 27

., number of sides to approximate the original shape, from left to right: 20, 10, 15,

Table 2
Invariance to image rotations. The matching score gives the percentage of over-

lapping skeleton pixels detected in both, the original image and in the rotated

version.

Algorithm Matching score

(95% confidence interval)

Cubic 0.9570.002

Linear 0.9570.004

IMA þ {CP,LP,SRP} 0.9370.005

Scale axis transform 0.9070.003

DCE 0.7870.003

Voronoi 0.7170.009

Thinning 0.4970.01



Fig. 18. Image rotation test for angles of 35, 45, 70, 85, 110, and 135 degrees using

nearest-neighbor interpolation.

Fig. 19. Image rotation test for angles of 35, 45, 70, 85, 110, and 135 degrees using

bilinear interpolation.

Fig. 20. Percentage of skeleton pixels introduced after the skeletonization of the

rotated image (i.e., skeleton pixels that were not detected in the original image but

appeared in the rotated version.

Fig. 21. Percentage of skeleton pixels not present after the skeletonization of the

rotated image (i.e., skeleton pixels that were detected in the original image but not

in the rotated version).

Table 3
Invariance to image rotations. Inserted/removed pixel score is the percentage of

pixels introduced/removed in the skeletonization by the rotation.

Algorithm Inserted pixels

(95% confidence interval)

Removed pixels

(95% confidence interval)

IMA þ {CP,LP,SRP} 0.01370.008 0.05770.007

Cubic 0.01570.002 0.03570.002

Linear 0.0270.0003 0.03070.003

Scale axis transform 0.0270.00005 0.0870.00004

DCE 0.0270.0006 0.0870.0002

Voronoi 0.0970.0012 0.1070.0015

Thinning 0.1970.0006 0.3270.02

Fig. 22. Output of our algorithm for regular and noisy images of same image class

in the MPEG-7 dataset. Last is the same as middle column but with the contour

approximation displayed. Parameters are unchanged from other experiments with

T¼25 and S¼1.2.
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outcome of DCE with user supervision for each sample is similar
to our results but parameter selection has a big influence on the
DCE outcome. It is usually not possible to find a choice that is
optimal for all the samples in one class see, e.g., the beetle shape



Fig. 23. More output examples from proposed algorithm. The input parameter selection was the same for the whole dataset.

Fig. 24. Some more examples of our proposed algorithm of shapes with holes

using the same parameter selection.
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in the last column of Fig. 17 where one of the beetle legs has been
missed. Parameter tuning for the DCE is also a time consuming
process.
5. Conclusions

We presented a new pruning algorithm that removes exces-
sive branches from skeletons of noisy 2D shapes. The algorithm
uses a simple contour approximation and a novel branch removal
technique. The combination of our two pruning steps proved to be
more robust and flexible than using the DCE-based algorithm.
Because our algorithm is robust to noise and rigid transforma-
tions and it produces consistent high-quality results with the
same input parameters, it can be used in semi-automatic or even
automatic applications. The broad range of possible applications
is also helped by the algorithm’s speed and relative ease of
implementation. Because our algorithm produces a connected
skeleton that is a subset of the integer medial axis of the noisy
shape, the shape can be reconstructed from the skeleton using the
feature transform. It should also be noted that the integer medial
axis can be found efficiently in 3D and we would like to
investigate an extension of our algorithm to 3D in future work.
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